1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#include <Eigen/Dense>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>
/*
We need a functor that can pretend it's const,
but to be a good random number generator
it needs mutable state.
*/
namespace Eigen {
namespace internal {
template<typename Scalar>
struct scalar_normal_dist_op
{
static boost::mt19937 rng; // The uniform pseudo-random algorithm
mutable boost::normal_distribution<Scalar> norm; // The gaussian combinator
EIGEN_EMPTY_STRUCT_CTOR(scalar_normal_dist_op)
template<typename Index>
inline const Scalar operator() (Index, Index = 0) const { return norm(rng); }
};
template<typename Scalar> boost::mt19937 scalar_normal_dist_op<Scalar>::rng;
template<typename Scalar>
struct functor_traits<scalar_normal_dist_op<Scalar> >
{ enum { Cost = 50 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
} // end namespace internal
} // end namespace Eigen
/*
Draw nn samples from a size-dimensional normal distribution
with a specified mean and covariance
*/
void main()
{
int size = 2; // Dimensionality (rows)
int nn=5; // How many samples (columns) to draw
Eigen::internal::scalar_normal_dist_op<double> randN; // Gaussian functor
Eigen::internal::scalar_normal_dist_op<double>::rng.seed(1); // Seed the rng
// Define mean and covariance of the distribution
Eigen::VectorXd mean(size);
Eigen::MatrixXd covar(size,size);
mean << 0, 0;
covar << 1, .5,
.5, 1;
Eigen::MatrixXd normTransform(size,size);
Eigen::LLT<Eigen::MatrixXd> cholSolver(covar);
// We can only use the cholesky decomposition if
// the covariance matrix is symmetric, pos-definite.
// But a covariance matrix might be pos-semi-definite.
// In that case, we'll go to an EigenSolver
if (cholSolver.info()==Eigen::Success) {
// Use cholesky solver
normTransform = cholSolver.matrixL();
} else {
// Use eigen solver
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigenSolver(covar);
normTransform = eigenSolver.eigenvectors()
* eigenSolver.eigenvalues().cwiseSqrt().asDiagonal();
}
Eigen::MatrixXd samples = (normTransform
* Eigen::MatrixXd::NullaryExpr(size,nn,randN)).colwise()
+ mean;
std::cout << "Mean\n" << mean << std::endl;
std::cout << "Covar\n" << covar << std::endl;
std::cout << "Samples\n" << samples << std::endl;
}
| |