CDF problem with <cmath>

Hi guys!
I'm studying the book 'C++ for Quantitative Finance' and implementing the first example Vanilla Option, but in the function to calculate call / put option values, the IDE always reports a error: 'N was not declared in this scope'.
I bet the N stands for the calculation of CDF of a standard normal distribution, using <cmath>. I checked <cmath> documentation and found out that the library does not include function N.
Could u please give me some solution for this ?
Thanks a lot!!!

Here are the codes:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#ifndef VANILLAOPTION_H
#define VANILLAOPTION_H

class vanillaoption
{
    public:
        vanillaoption(); 

        vanillaoption(const double& _K,
                      const double& _r,
                      const double& _T,
                      const double& _S,
                      const double& _sigma); 
        vanillaoption(const vanillaoption& rhs); 

        vanillaoption& operator=(const vanillaoption& rhs); 

        virtual ~vanillaoption();

        // selector (getter) methods for our option parameters
        double getK() const;
        double getr() const;
        double getT() const;
        double getS() const;
        double getsigma() const;

        
        double calcalloption() const;
        double calputoption() const;

    protected:

    private:
        void init();
        void copy(const vanillaoption& rhs);

        double K;
        double r;
        double T;
        double S;
        double sigma;

};

#endif // VANILLAOPTION_H



#include <iostream>
#include "vanillaoption.h"
#include <cmath>

using namespace std;

void vanillaoption::init(){
        K = 100.0;
        r = 0.05;
        T = 1.0;
        S = 100.0;
        sigma = 0.2;

}

vanillaoption::vanillaoption()
{
    init();
}

vanillaoption::vanillaoption(const double& _K, const double& _r, const double& _T, const double& _S, const double& _sigma)
{
    K = _K;
    r = _r;
    T = _T;
    S = _S;
    sigma = _sigma;
}

//copy constructor
vanillaoption::vanillaoption(const vanillaoption& rhs)
{
    copy(rhs);
}

//assignment operator
vanillaoption& vanillaoption::operator=(const vanillaoption& rhs)
{
    if (this == &rhs) return *this; 
    copy(rhs); 
    return *this; /
}

void vanillaoption::copy(const vanillaoption& rhs){
    K = rhs.getK();
    r = rhs.getr();
    T = rhs.getT();
    S = rhs.getS();
    sigma = rhs.getsigma();
}

vanillaoption::~vanillaoption()
{
    //empty
}

double vanillaoption::getK() const {
    return K;
}

double vanillaoption::getr() const {
    return r;
}

double vanillaoption::getT() const {
    return T;
}

double vanillaoption::getS() const {
    return S;
}

double vanillaoption::getsigma() const {
    return sigma;
}



double vanillaoption::calcalloption() const
{
    double sigma_squrt_T = sigma * sqrt(T);
    double d_1 = ( log(S/K) + sigma * sigma * 0.5 * T) / sigma_squrt_T;
    double d_2 = d_1 - sigma_squrt_T;
    return (S * exp(-r*T) * N(d_1)) - (K * exp(-r*T) * N(d_2)); // problem occurred in this line
};
double vanillaoption::calputoption() const
{
    double sigma_squrt_T = sigma * sqrt(T);
    double d_1 = ( log(S/K) + sigma * sigma * 0.5 * T) / sigma_squrt_T;
    double d_2 = d_1 - sigma_squrt_T;
    return (K * exp(-r*T) * N(-d_2)) - (S * exp(-r*T) * N(-d_1));
};



Thanks!
Last edited on
Line 89: Extraneous /

Line 132, 139: N appears to be a function call, but I see no such function.

I have not fooled with probability since the 90s so forgive me... but a quick google provided this function for N:

double normalCFD(double value)
{
return 0.5 * erfc(-value * M_SQRT1_2);
}

TEST it to see if it is correct and giving yuo what you expect.

erfc is in <cmath> as is the constant. It should flat out work if the formula is correct.
Last edited on
Thanks a lot, AbstractionAnon and jonnin, using the function indicated by jonnin, the problem has been solved!!!I'm so happy with this, my friends!
Topic archived. No new replies allowed.