Binary search tree menu help!!

If anyone could help me i'd really really appreciate it

how can i make this program menu-driven?
a. Add a nodes
b. Walk the tree (list the nodes)
c. Find a node
d. Find the lowest node (min)
e. Find the highest node (max)
f. Find the successor to a node
g. Find the predecessor to a node
h. Delete a node

They prof said everything is inside the code all i have to do is make a menu for it, i don't know what i'm doing i'm so lost :(

On line 245 nodes are added automatically. How can i ask the user to enter a node and store the answer to replace that "300"
Some help would be greatly appreciated
thank you!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

#include <iostream>
using namespace std;

// A generic tree node class
class Node {
    int key;
    Node* left;
    Node* right;
    Node* parent;
public:
    Node() { key=-1; left=NULL; right=NULL; parent = NULL;};
    void setKey(int aKey) { key = aKey; };
    void setLeft(Node* aLeft) { left = aLeft; };
    void setRight(Node* aRight) { right = aRight; };
    void setParent(Node* aParent) { parent = aParent; };
    int Key() { return key; };
    Node* Left() { return left; };
    Node* Right() { return right; };
    Node* Parent() { return parent; };
};

// Binary Search Tree class (class name is Tree)
class Tree {
    Node* root;
public:
    Tree();
    ~Tree();
    Node* Root() { return root; };
    void addNode(int key);
    Node* findNode(int key, Node* parent);
    void walk(Node* node);
    void deleteNode(int key);
    Node* min(Node* node);
    Node* max(Node* node);
    Node* successor(int key, Node* parent);
    Node* predecessor(int key, Node* parent);
private:
    void addNode(int key, Node* leaf);
    void freeNode(Node* leaf);
};

// Constructor
Tree::Tree() {
    root = NULL;
}

// Destructor
Tree::~Tree() {
    freeNode(root);
}

// Free the node
void Tree::freeNode(Node* leaf)
{
    if ( leaf != NULL )
    {
        freeNode(leaf->Left());
        freeNode(leaf->Right());
        delete leaf;
    }
}

// Add a node - Time complexity is O(height of tree) on average
void Tree::addNode(int key)
{
    // If the tree has no elements (empty), add the root
    if ( root == NULL ) {
        cout << "add root node ... " << key << endl;
        Node* n = new Node();
        n->setKey(key);
    root = n;
    }
    else {
    cout << "add other node ... " << key << endl;
    addNode(key, root);
    }
}

// Add a node (private)
void Tree::addNode(int key, Node* leaf) {
    if ( key <= leaf->Key() )
    {
        if ( leaf->Left() != NULL )
            addNode(key, leaf->Left());
        else {
            Node* n = new Node();
            n->setKey(key);
            n->setParent(leaf);
            leaf->setLeft(n);
        }
    }
    else
    {
        if ( leaf->Right() != NULL )
            addNode(key, leaf->Right());
        else {
            Node* n = new Node();
            n->setKey(key);
            n->setParent(leaf);
            leaf->setRight(n);
        }
    }
}

// Find a node - Time Complexity is O(height of tree) on average
Node* Tree::findNode(int key, Node* node)
{
    if ( node == NULL )
        return NULL;
    else if ( node->Key() == key )
        return node;
    else if ( key <= node->Key() )
        findNode(key, node->Left());
    else if ( key > node->Key() )
        findNode(key, node->Right());
    else
        return NULL;
}

// Print the tree
void Tree::walk(Node* node)
{
    if ( node )
    {
        cout << node->Key() << " ";
        walk(node->Left());
        walk(node->Right());
    }
}

// Find the node with the min key
// Traverse the left sub-tree recursively
// till left sub-tree is empty to get min
Node* Tree::min(Node* node)
{
    if ( node == NULL )
        return NULL;

    if ( node->Left() )
        min(node->Left());
    else
        return node;
}

// Find the node with the max key
// Traverse the right sub-tree recursively
// till right sub-tree is empty to get max
Node* Tree::max(Node* node)
{
    if ( node == NULL )
        return NULL;

    if ( node->Right() )
        max(node->Right());
    else
        return node;
}

// Find successor to a node
// Find the node, get the node with max value
// for the right sub-tree to get the successor
Node* Tree::successor(int key, Node *node)
{
    Node* thisKey = findNode(key, node);
    if ( thisKey )
        return max(thisKey->Right());
}

// Find predecessor to a node
// Find the node, get the node with max value
// for the left sub-tree to get the predecessor
Node* Tree::predecessor(int key, Node *node)
{
    Node* thisKey = findNode(key, node);
    if ( thisKey )
        return max(thisKey->Left());
}

// Delete a node
// (1) If leaf just delete
// (2) If only one child delete this node and replace
// with the child
// (3) If 2 children. Find the predecessor (or successor).
// Delete the predecessor (or successor). Replace the
// node to be deleted with the predecessor (or successor).
void Tree::deleteNode(int key)
{
    // Find the node.
    Node* thisKey = findNode(key, root);

    // (1)
    if ( thisKey->Left() == NULL && thisKey->Right() == NULL )
    {
        if ( thisKey->Key() > thisKey->Parent()->Key() )
            thisKey->Parent()->setRight(NULL);
        else
            thisKey->Parent()->setLeft(NULL);

        delete thisKey;
    }

    // (2)
    if ( thisKey->Left() == NULL && thisKey->Right() != NULL )
    {
        if ( thisKey->Key() > thisKey->Parent()->Key() )
            thisKey->Parent()->setRight(thisKey->Right());
        else
            thisKey->Parent()->setLeft(thisKey->Right());

        delete thisKey;
    }
    if ( thisKey->Left() != NULL && thisKey->Right() == NULL )
    {
        if ( thisKey->Key() > thisKey->Parent()->Key() )
            thisKey->Parent()->setRight(thisKey->Left());
        else
            thisKey->Parent()->setLeft(thisKey->Left());

        delete thisKey;
    }

    // (3)
    if ( thisKey->Left() != NULL && thisKey->Right() != NULL )
    {
        Node* sub = predecessor(thisKey->Key(), thisKey);
        if ( sub == NULL )
            sub = successor(thisKey->Key(), thisKey);

        if ( sub->Parent()->Key() <= sub->Key() )
            sub->Parent()->setRight(sub->Right());
        else
            sub->Parent()->setLeft(sub->Left());

        thisKey->setKey(sub->Key());
        delete sub;
    }
}

// Test main program
// For the Assignment, you make this Menu Driven
int main() {
    Tree* tree = new Tree();

    // Add nodes
    tree->addNode(300);
    tree->addNode(100);
    tree->addNode(200);
    tree->addNode(400);
    tree->addNode(500);

    // Traverse the tree
    tree->walk(tree->Root());
    cout << endl;

    // Find nodes
    if ( tree->findNode(500, tree->Root()) )
        cout << "Node 500 found" << endl;
    else
        cout << "Node 500 not found" << endl;

    if ( tree->findNode(600, tree->Root()) )
        cout << "Node 600 found" << endl;
    else
        cout << "Node 600 not found" << endl;

    // Min & Max
    cout << "Min=" << tree->min(tree->Root())->Key() << endl;
    cout << "Max=" << tree->max(tree->Root())->Key() << endl;

    // Successor and Predecessor
    cout << "Successor to 300=" <<
            tree->successor(300, tree->Root())->Key() << endl;
    cout << "Predecessor to 300=" <<
            tree->predecessor(300, tree->Root())->Key() << endl;

    // Delete a node
    tree->deleteNode(300);

    // Traverse the tree
    tree->walk(tree->Root());
    cout << endl;

    delete tree;
    return 0;
}
Topic archived. No new replies allowed.